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This paper presents the results of computations of the behavior of the fiber-initiated high 
density Z-pinch (HDZP). Its purpose is twofold. One is to study the behavior of the physical 
system itself as an interesting controlled fusion experiment. The main result of this study is a 
demonstration of the relaxation of the full inertial behavior of the pinch to simplified self- 
similar behavior in which the forces on the system are in near balance. The moving free 
boundary and violent initial behavior of this configuration require careful treatment. This 
leads to the other purpose of the work, to use this realistic physical system as a test-bed for 
a general-purpose l-dimensional code based on moving finite elements. A key step in accom- 
plishing this goal has been the recognition that numerical stability of the discretized equations 
has required the use of nonconservative quantities as the fundamental dependent variables to 
be discretized. The main result of this work is a code which is capable of treating a very 
general class of nonlinear, time-dependent fluid equations. 6 1989 Academic Press, Inc. 

I. INTRODUCTION 

This paper presents the results of computations of the behavior of the liber- 
initiated high density Z-pinch (HDZP). Its purpose is twofold. One is to study the 
behavior of the physical system itself as an interesting controlled fusion experiment. 
The main result of this study is a demonstration of the relaxation of the full inertial 
behavior of the pinch to simplified self-similar behavior in which the forces on the 
system are in near balance. The moving free boundary and violent initial behavior 
of this configuration require careful treatment. This leads to the other purpose of 
the work, to use this realistic physical system as a test-bed for a general-purpose 
l-dimensional code based on moving finite elements. A key step in accomplishing 
this goal has been the recognition that numerical stability of the discretized 
equations has required the use of nonconservative quantities as the fundamental 
dependent variables to be discretized. The main result of this work is a code which 
is capable of treating a very general class of nonlinear, time-dependent fluid equations. 

The fiber-initiated high density Z-pinch [l-4] is a novel approach to controlled 
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fusion in which a megavolt-range potential is to be applied along a thin filament of 
frozen deuterium, driving a megamp-range current through it, with the intention of 
heating the deuterium to fusion temperatures in 100 ns while stably confining it in 
its self-magnetic field. Existing experiments have achieved temperatures of about 
300 eV with densities of about 4 x lo*’ cm- 3 in about 70 ns, with a voltage of 
600 kV and a current of 250 kA. During most of the phase of current ramp-up, no 
gross instabilities are observed. Planned experiments with a voltage of 3.2 MV and 
a current of 1.2 MA would achieve significant thermonuclear burn of a D-T fiber, 
on the basis of extrapolations from simple models and persistence of the anomalous 
stability into the realm of ignition. The HDZP approach thus offers the promise of 
a simple, small, and inexpensive route to controlled fusion. 

As with many fusion plasmas, simulation of the HDZP presents serious 
challenges to existing numerical methods [S, 61. According to ideal MHD theory, 
the stability of the pinch against sausage (m = 0) modes depends upon the main- 
tenance of a sufficiently smooth pressure profile. The ability of the HDZP to 
maintain such a profile is a main distinguishing feature of this approach from early 
pinch experiments in which a diffuse gas was caused to contract from the wall and 
collapse onto the axis. A simulation must be capable of treating the moving free 
boundary of the pinch without introducing an artificial discontinuity into the 
pressure profile at the plasma edge. Nevertheless, in its approach to a smooth 
profile, the plasma may sustain transient moving shocks during the discharge. 
There are multiple time scales in which inertial and transport effects both play 
important roles. The problem is simplified by the fact that the high density of the 
plasma justifies a one-fluid treatment. Furthermore, the length-to-radius ratio of 
2500 and the observed stability against asymmetric (m = 0 and 1) motions during 
current ramp-up justifies a l-dimensional treatment. Simulations based on these 
assumptions may later be used as the basis of linear stability studies which depend 
upon detailed knowledge of a 1D configuration. 

The moving finite element (MFE) method, recently developed by Keith Miller 
and colleagues [7-151, is an adaptive grid method for solving the type of dis- 
sipative fluid equations appropriate to the HDZP. The equations are cast in varia- 
tional form, the dependent variables are expanded in linear finite elements on a 
movable grid, and discretized equations are derived by simultaneously minimizing 
the variational with respect to the amplitudes and node positions. The grid moves 
where it is needed to give a best fit to the evolving solution, automatically adapting 
itself to the moving boundary and propagating shocks. The prescription for moving 
the grid is conceptually simple and compelling, and justified a posteriori by 
the good resolution of the solutions. The time integration method is stiffly stable, 
allowing the code to follow the behavior on a long time scale without being subject 
to Courant stability limits on the time step. Numerical stability does not require the 
introduction of large artificial dissipation terms, and the dynamical code therefore 
remains accurate on transport time scales. 

Previous applications of the MFE method have treated simpler equations than 
those considered here. The first publications [7-91 introduce the basic concepts 
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and mention a wide range of potential applications. However, they present results 
of computations on only a few simple, l-dimensional scalar equations, describing 
the evolution of a single dependent variable in the presence of a linear diffusion 
term and nonlinear convective and source terms. The next two publications 
[ 10, 111 attempt a general solution to systems of coupled PDEs, and are closer to 
the present work. However, they use analytically evaluated quadratures for a few 
simple functional forms of flux and source terms and are incapable of dealing with 
the very complicated transport coefficients, convective fluxes, and radiative source 
terms characteristic of a realistic magnetized plasma, for which analytical qua- 
dratures are hopelessly difficult or impossible. A similar code to handle systems of 
equations in two dimensions is described in [ 121. All these early efforts encoun- 
tered difficulties in controlling the node motion. There was a tendency for most of 
the nodes to collapse into a shock, causing inadequate resolution of the broad 
regions outside a shock. This problem was solved by the introduction of gradient 
weighting in [ 131. Further simple examples of 2D MFE and gradient-weighted 1 D 
MFE are presented in [ 141. A gradient-weighted 2D code with specific applications 
is described in [15]. 

The present work has required dealing with three principal issues. First, a code 
structure has been developed which is adapted to the most general form of 
dissipative fluid equations, the most general equations treatable by linear finite 
elements, and practical numerical evaluation of quadratures. The favorable effect of 
gradient weighting on the node motion contributes to the accuracy of numerical 
quadratures. Second, numerical stability has been found to require the use of non- 
conservative variables, such as velocity and temperature. Since the conservation 
laws are not trivially satisfied by the discretized equations, then can serve as a 
check on the accuracy of the method. The high degree of accuracy achievable with 
even a modest number of elements is found to assure acceptable satisfaction of con- 
servation laws. Third, a set of boundary conditions has been found which ade- 
quately handles the singular behavior of the equations at the origin and the moving 
vacuum-plasma interface while assuring numerical stability. It is hoped that the 
problems solved here, while motivated by a particular application, are sufficiently 
general to permit the treatment of a much wider range of physics problems 
described by 1 D systems of nonlinear, time-dependent partial differential equations. 

It has been noted by several authors that simplified subsets of the equations of 
the HDZP have self-similar solutions for which the partial differential equations 
separate into two systems of ordinary differential equations, for the spatial profiles 
and the time evolution of the scale factors, respectively [S, 16, 173. These ordinary 
differential equations are far simpler to solve and understand by analytical and 
numerical methods than the original partial differential equations. There is evidence 
that self-similar solutions may act as attractors for the solutions of the partial 
differential equations and thus provide a means for analyzing and understanding 
the time-asymptotic final state [S]. As a means for interpreting our numerical 
solutions, we present new results on the behavior of these self-similar solutions in 
Appendix A. 
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The remainder of this paper is organized as follows. The fluid equations for the 
1D model of the HDZP are presented in Section II. The theory of moving finite 
elements is presented in Section III. While the theory can be found in various 
works by Miller et al., the discussion here makes this work more self-contained, 
establishes notation, and permits additional commentary on the method. This 
section concludes with a discussion of the exact conservation properties of the 
discretized equations. The implementation of a computer code is discussed in 
Section IV. The discussion covers the method of evaluation of the required 
quadratures, the choice of dependent variables, the choice of initial conditions, 
integration of the ordinary differential equations, stabilization terms, and boundary 
conditions. Examples of full numerical solutions for the proposed HDZP experiment 
are presented in Section V. The results are discussed in Section VI. Self-similar 
solutions to the dissipative equations are discussed in Appendix A. 

II. FLUID EQUATIONS 

The equations used to describe the HDZP are a l-fluid form of Braginskii’s equa- 
tions [IS]. There are three fluid equations, describing, respectively, conservation of 
mass, momentum, and energy, and one equation for the azimuthal component of 
the magnetic field, derived from Faraday’s law, Ampere’s law, and Ohm’s law. After 
discussing these equations, we present a general form of the equations which is 
convenient for subsequent discussion of their properties and their discretization 
and solution. It is common in numerical simulations to express fluid equations in 
conservative form. However, there are compelling reasons to depart from such a 
conservative form in this study. We conclude the section with a discussion of the 
nonconservative form of the equations to be used. 

The equation of mass conservation is 

ap ~+v+nq=o, 

where p is the mass density and v is the fluid velocity. In cylindrical coordinates, 
allowing for spatial dependence on the radius r only, and with only a radial velocity 
u, this can be expressed as 

(2) 

The most convenient form for our purposes is obtained by multiplying the equation 
by r and noting that r and t are independent, 

This is in conservative form in cylindrical coordinates if we regard it as an equation 
for pr, the density of fluid per unit interval of r. 
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The momentum conservation equation can be expressed as 

$n)+V-T=O, 

where the momentum flux tensor T is given by 

(5) 

with p = 2nkT the scalar pressure; n the electron density; T the temperature; k 
Boltzmann’s constant; I[ Braginskii’s viscosity tensor, expressible as a linear com- 
bination of the velocity u and its first derivative au/&; I the 3 x 3 identity tensor; 
and B the magnetic field. 

Braginskii’s viscosity tensor n is quite complicated, and we shall not present its 
detailed form here. With one exception, discussed below, all terms which do not 
vanish by symmetry are retained in this work. These include terms which scale as 
the unmagnetized parallel component of viscosity qO, even though they act in the 
radial direction and thus transverse to the magnetic field. While they are commonly 
neglected, they are found to play an important role in the behavior, and are 
discussed further in Section V and Appendix A. 

The exception to the retention of all viscous terms involves the coupling of axial 
and radial velocities. There is a gyroviscous term proportional to q3 which causes 
the radial velocity II, to drive a small axial velocity u, through xc,,. The reciprocal 
term in the radial momentum equation, which represents the reaction of u, back on 
V vanishes because it enters through its axial derivative &c,,/az, which vanishes 
bzcause of the assumed symmetry. Besides symmetry, there is another reason to 
drop contributions from u,. Since v, is driven only by viscosity, while u, is driven 
by pressure gradients, and viscosity is small compared to pressure by the fundamen- 
tal expansion parameter, the axial velocity is formally small compared to radial 
viscous friction and should be neglected. The contribution to the heat equation of 
the viscous friction associated with v, may be neglected for this reason. Thus, while 
the axial momentum equation could have been retained in this study, it has been 
dropped for these reasons and for simplicity. The remaining equations form an 
autonomous subsystem. 

Equation (4) is in vector conservative form. A scalar component of this equation 
can be obtained by taking its scalar product with a particular unit vector. For 
Cartesian components the result is a scalar conservative equation. For curvilinear 
coordinates in general and cylindrical coordinates in particular, the unit vectors 
vary in space and do not commute with the divergence, and the resulting scalar 
component equations are therefore not conservative. The radial component of the 
momentum equation can be expressed as 

581/85/l-11 
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with T,, acting as a source for the radial momentum. As an example of this, when 
rotation is present, T,, contains a term representing centrifugal force, which causes 
radial acceleration. Another example is that the magnetic terms in T,, contribute 
to radial confinement. 

The energy conservation equation can be expressed in scalar conservative form, 

i3& 
,+VQ=O, 

where the total energy E is the sum of kinetic, thermal, and magnetic energy, 

1 3 B2 
E=pv2+p+$ 

the total energy flux vector Q is given by 

(8) 

E is the electric field; c is the speed of light; and the last term is the Poynting vector 
for energy flow in the fields. The heat flux vector q is expressed by Braginskii as a 
linear combination of the temperature gradient, corresponding to thermal conduc- 
tion, and the electric current, the Onsager conjugate terms to the thermal force 
terms in the electron equation of motion or Ohm’s law, 

q= -kpVT-~TBJ. 
ne (10) 

Here, x is the thermal conductivity tensor and I! is the cross tensor relating the 
forces and fluxes for the temperature and the current. 

While it is possible to use the conservative form of the energy equation, there are 
reasons why it is better not to do so. The total energy E is a sum of three terms, 
representing kinetic, thermal, and magnetic energies. Since we have other equations 
to determine the velocity and the magnetic field, the energy equation must be used 
to determine the temperature, which is needed to evaluate transport coefficients. In 
regions where the kinetic or magnetic terms are much larger than the thermal term, 
the temperature must be determined by taking the difference between two large 
numbers to get a small number, the cardinal sin of numerical methods. This 
happens, for example, at the edge of the plasma in the HDZP, where the density 
and hence the internal energy go to zero while te magnetic field remains finite. It 
could also happen in regions of supersonic flow where the kinetic energy could 
become large compared to the thermal term. It is therefore best to combine the 
energy equation with the mass and momentum equations to obtain an equation for 
the thermal energy alone, 

$(;p)+V(;pv+q)=(E+~vxB)J-(pI+n):Vv-P,, (11) 
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with J the electric current. This equation contains heat source terms on the right 
representing adiabatic compression and Joule heating by the electric field and 
viscous friction. It also contains a heat sink term P,, due to radiation losses, which 
was not included explicitly in Eq.(7), although it could have been treated by a 
suitable reinterpretation of the energy density and Poynting flux to include the 
energy in the radiation field. In cylindrical coordinates this, becomes 

The magnetic field is advanced in time by Faraday’s law, 

C?B -= 
at -cVxE. 

(12) 

While this equation is not so obviously in vector conservative form, a scalar conser- 
vative component can be derived by taking the scalar product with the gradient of 
any time-independent scalar tx, yielding 

;(BVU)+V+EXV~)=O, (14) 

which expresses the conservation of a particular component of magnetic flux. The 
HDZP has only an azimuthal component of magnetic field, and an equation for 
this quantity is obtained by choosing M = 8 and specializing to cylindrical coor- 
dinates, yielding 

dB, a dt-jpE,)=O. 

Ohm’s law, 

E+IvxB=R 
c ne’ (16) 

is used to eliminate E, with R, the momentum exchange term between ions and 
electrons, given by 

R=-+@VT, (17) 

and the a tensor is related to the electrical resistivity. Finally, Ampere’s law without 
the displacement current, 

VxB=4”J, 
c (18) 
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is used to eliminate J in terms of B to obtain 

(19) 

Equations (3), (6), (12), and (19) constitute a system of four coupled equations 
for the time derivatives of the four dependent variables pr, pvr, i pr, and B,. Of 
these, Eqs. (3) and (19) are conservative while Eqs. (6) and (12) contain source 
terms. The heat flux q, the viscosity tensor rc, and the current density JZ can be 
expressed in terms of derivatives of the dependent variables. All terms in the equa- 
tions can be expressed as functions of the two independent variables r and t, the 
four dependent variables, and their first and second spatial derivatives. A general 
form in which all equations can be expressed is 

ay aF 
z+z=s. (20) 

Here, y is a vector of dependent variables, in this case of length 4. F is a corre- 
sponding vector of fluxes, 

F=C(t, r, y)-D(t, r, y).$, (21) 

in which the convective term C and the diffusion tensor D may be arbitrary 
nonlinear functions of their arguments. The source terms S can be expressed as 

S = W, r, Y, ay/ar), 

again involving arbitrary nonlinear functions of the arguments. 

(22) 

There is a degree of ambiguity in the expression of a particular set of equations 
in this form, since the derivatives of convective fluxes may also be expressed as 
sources. The advantage of expression in terms of convective fluxes where possible 
is that it avoids the need to evaluate analytical derivatives of complicated functions, 
and this may simplify the formulation of a code. It may also appear that expression 
in terms of fluxes retains the conservative form of the equations better, and there- 
fore leads to exact conservation properties of the discretized equations. This is not 
so true for moving finite elements, as will be discussed further in the next section. 
The accuracy with which the discretized equations preserve conserved quantities is 
not particularly dependent on the way this choice is made, and hence it may be 
made on the basis of convenience. 

The form of Eqs. (20)(22) is well suited to the problem at hand for a number 
of reasons. It may be used to express any parabolic or hyperbolic system of equa- 
tions in which the dependent variables depend upon one spatial derivative and time 
and contain no spatial derivatives higher than second order. Since fluid equations 
are derived from kinetic equations, for example, in the methods of Chapman and 
Enskog and Braginskii, by expansion in the smallness of the mean free path, carried 
to second order in order to include transport effects, the fluid equations contain no 
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spatial derivatives higher than second order and can always be expressed in this 
form. The form is readily generalized to 2 and 3 dimensions by replacing the spatial 
derivative in Eq. (20) with a divergence and the spatial derivative in Eqs. (21) and 
(22) with a gradient. Different geometries, e.g., Cartesian, cylindrical, and spherical, 
differ only by factors of the Jacobian of the coordinate system in the functional 
form of the fluxes and sources. The equations are in a most convenient form for the 
description and implementation of the discretization described in the next section. 
They are in the best form for exploiting whatever conservation properties they 
possess. Finally, it is the most general form of equations which can be treated by 
linear finite elements. 

While the form of Eqs. (20)-(22) has been motivated by the conservative or 
nearly conservative form of the fluid equations, there is no restriction that requires 
us to use this form only for such equations. The momentum and thermal energy 
equations, Eqs. (6) and (12) can be manipulated into equations for the velocity 
and temperature, and these equations can also be expressed in this form. The 
advantage of using this form is that it lends itself especially well to formulation and 
computation of the discretized equations. The presence of the source term in 
Eq. (20) permits even variables like velocity and temperature, which are in no sense 
conserved quantities, to be expressed in this convenient form. 

To obtain the an equation for the velocity, we multiply Eq. (3) by u, subtract it 
from Eq. (6) and use Eq. (5) to obtain 

To express this in the form of Eqs. (20)-(22), we divide by pr and re-express the 
radial flux term to obtain 

= -,~+~(p-~+~,,)-(p+~+n,,)~~(pr). (24) 

The terms on the right may now be regarded as source terms, since they depend on 
spatial derivatives of at most first order, and the equation is now in the form of 
Eqs. (20t(22). Similar manipulations with the energy equation lead to an equation 
for the temperature, 

(25) 

where m is the ion mass. 
While Eqs. (6) and (12) are simpler than Eqs. (24) and (25) and numerical 

simulations most often use conservative or nearly conservative equations, there is 
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more than academic interest in observing that Eqs. (24) and (25) have the form of 
Eqs. (2Ok(22). We have seen that the radial momentum equation is not conser- 
vative in the first place, and there is reason to dispense with the purely conservative 
form of the energy equation. It will be shown in Section III that discretization by 
moving finite elements does not preserve exact conservation laws even when the 
original continuous equations are conservative. It will be shown in Section IV that 
there is a compelling reason to prefer velocity and temperature to momentum and 
energy as the fundamental dependent variables of the method. It will be shown in 
Section V that the conservation laws are well satisfied in spite of these properties 
because of the high degree of accuracy provided by the method. Since it is useful 
to cast the equations in this form for evaluation of the required numerical qua- 
dratures, it is important to know that this form does not depend upon the par- 
ticular choice of dependent variables. 

Braginskii’s fluid equations are valid over a limited range of density and tem- 
perature. At high density and low temperature, the Coulomb logarithm is small or 
negative, the material is not in the plasma phase, the Fokker-Planck equation from 
which Braginskii’s equations are derived is not valid, and more complicated physics 
must be included to treat this cold startup phase. At high temperatures, the mean 
free path due to Coulomb collisions is large compared to the radial scale length, the 
asymptotic expansion which is used to derive the fluid equations from the kinetic 
equations fails to converge, and a full kinetic treatment is necessary. The range of 
temperatures over which the fluid equations are valid is rather narrow, but not so 
narrow as to lack physical interest. 

To demonstrate the validity of these equations in the range of temperatures 
treated here, consider a canonical pinch formed from a fiber of uniform solid den- 
sity n, = 5 x 10” cm p3 and radius a, = 20 pm. As the radius a expands or contracts 
from a,, assume that the density n is uniform and varies as l/a’. Assume a canonical 
pinch temperature of T, = 1 keV, and a canonical magnetic field B, which just 
balances the fluid pressure, such that B387r = 2n,k7’,. The Coulomb logarithm can 
then be expressed as 

In n = 6.075 + 2 ln(a/u,) + ln( T/T,), T>50eV, 

= 9.528 + 2 ln(u/a,) + 1.5 ln( T/T,), T<50eV. 

This shows that the Coulomb logarithm vanishes at the initial radius for T = 17 eV, 
reaches 3.77 for T= 100 eV, and 6.075 for T= 1 keV. Since the plasma initially 
expands to a larger radius, it seems reasonable to use these equations above about 
100 eV. 

At high temperatures, the Coulomb logarithm is nearly constant, and the main 
concern is the ratio of the mean free path to the radius. The deuterium ion free path 
1, is slightly larger than that for the electrons, and this can be expressed as 

;= ($)(-g-)’ (E), (2) =0.048. 
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This shows that the mean free path is reasonably small at 1 keV and the initial 
radius, but exceeds one above 4.5 keV at the initial radius, or below that if the 
radius expands appreciably. In that case, the parallel viscous terms exceed the 
pressure terms, invalidating the fluid equations. 

Another useful quantity to examine is the Hall parameter xi= w,tj for each 
species j, the product of cyclotron frequency WI times the mean free time TV, which 
measures the degree of magnetization. These parameters can be expressed as 

This shows that the electrons are strongly magnetized at the canonical parameters, 
while the ions are only weakly magnetized. Since B/B,, is roughly linear in the 
radius, vanishing at the axis, there is a small neighborhood of the axis where the 
electrons are weakly magnetized. It is important to use the full expressions for the 
transport coefficients, not the simpler highly magnetized limits. The largeness of x, 
almost everywhere also shows that the corrections to Braginskii’s transport 
coefficients derived by Epperlein and Haines [19] should not be important here. 
While some of their coefficients, namely c( h and PI, depart from the asymptotic 
behavior given by Braginskii at large values of x, and therefore differ substantially 
in magnitude at large x,, this is not true of the coefficients tlL and PA which 
influence this treatment. 

Several additional simplifications have been made in this treatment; Braginskii’s 
equations allow for unequal ion and electron temperatures, but the equilibration 
time is quite short compared to other phenomena. They also allow for a separate 
electron momentum equation, but electron inertia is negligible for the phenomena 
considered here. Both of these effects would require an increase in the number of 
dependent variables. Since they do not seem to have a large effect on the other 
variables treated here, they have been ignored. Braginskii’s equations predict that 
the conductivity depends only weakly on the density, through the Coulomb 
logarithm, and this leads to the unrealistic prediction that the plasma carries 
current even as the density goes to zero. A more realistic treatment, allowing for 
finite length and relativistic effects, would set a limit to the amount of current that 
could be carried by each electron. This has also been ignored. While the model 
studied here is therefore incomplete, the numerical treatment is sufficiently powerful 
to allow for a complete 1D fluid description. 

III. THE THEORY OF MOVING FINITE ELEMENTS 

In the previous section, the fluid equations for the high density Z-pinch were 
presented and manipulated into the general form of Eqs. (20)-(22). In this section, 
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the spatial dependence of these partial ‘differential equations is discretized by the 
method of moving finite elements, converting them to a coupled set of ordinary 
differential equations. 

Equation (20) is expressed in vector notation. The method of discretization 
makes use of a variational principle which is most clearly expressed in subscript 
notation. In subscript notation, Eq. (20) becomes 

(26) 

A variational principle for Eq. (20) is obtained by squaring it, multiplying by a 
weight function, summing over physical quantities, and integrating over the domain 
[a, b] in which it is to be solved. This gives 

L E E I” [ f$ + T - s,]~ witty r, y, ay/ar) dr, 
j&, u 

(27) 

where N is the number of physical dependent variables, the length of the vector y, 
and wi is a weight function, to be chosen later, which may be an arbitrary nonlinear 
function of its arguments. While L depends in a complicated, nonlinear manner on 
y, its dependence on ay/dt is simple and quadratic. It is variational for Eq. (26) in 
the sense that minimization of L with respect to the time derivative of y recovers 
Eq. W), 

aL 
a(ahiw 

= 0. 

An intuitive interpretation is that L measures the cumulative residual, or error, the 
degree to which the original equation fails to be satisfied, and the variational prin- 
ciple states that the original equation is recovered when the residual is reduced to 
a minimum, which is zero. 

A conventional Galerkin method is derived by expanding y in a set of basis 
functions, or elements, 

y,(r, t) = y;‘(t) aj(r), (29) 

where the y:(t) are time-dependent amplitudes, the aj(r) are time-independent basis 
functions, and summation over the n values of the repeated the index j is implied. 
The subscript on y:(t) then denotes the particular physical quantity, such as mass, 
momentum, energy, or magnetic field, while the superscript denotes a particular 
component in the basis function expansion. The time derivative of y is given by 

.PAr, t) = P:(t) a,(r). (30) 

Discretized equations for the amplitudes are obtained by minimizing L with 
respect to the time derivative of each of the amplitudes, 

aL - = 0. 
ai,: (31) 
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This generates the equations for the coefficients y{(t) which give the best fit to the 
true solution. 

A more explicit form of this equation is given by 

taj3 clk) 3” = tclj, Sib (32) 

where the scalar product in the ith equation is defined as 

(u, v)~ = 1” uvw, dr 
0 (33) 

and the right-hand side of Eq. (32) uses the definition 

Equation (32) constitutes a coupled system of ordinary differential equations for the 
amplitudes of the basis functions. The effect of this procedure is thus to reduce the 
original system of partial differential equations (PDEs) in space and time to a 
system of ordinary differential equations (ODES) in time only, which can then be 
solved by any of the well-developed methods for numerically integrating ODES. 

Conventional fixed finite elements constitute a particular choice of the basis func- 
tions a;(r), each of which vanishes outside a finite interval. The result is that the 
matrix (o(~, c(~) in Eq. (32) becomes banded, or sparse, since distant basis functions 
have no overlap, simplifying the tasks of evaluating the scalar products and invert- 
ing the matrix. 

The simplest and most common finite elements, and those used in this work, are 
the linear finite elements. Define a grid of points s’, with a = so < 3’ < . . . < sn = b. 
Then choose each basis function rx, to be 1 at sj, linear on each side of sj, and 0 
outside the interval [sj- ‘, si+ ‘1. S u se b q uent notation makes explicit the fact that 
each basis functions depends parametrically on several of the node positions s’. 
Then the basis functions are defined as 

ctj(T, s') = 0, r<sJ-'; 
r-ssi-1 

= si-si-lr SJ-‘<r<sj; 

S i+lAr 
= 

$+ 1 _ # sJ<r-csJ+‘; 
(35) 

= 0, siil cr. 

Since linear finite elements vanish beyond the nearest neighbor grid points, the 
corresponding matrix elements in Eq. (32) are nonzero only for nearest neighbors. 
The resulting matrix ia block tridiagonal, with a block representing the interactions 
among different physical quantities and the different blocks representing different 
basis functions. Expansion of a function in linear finite elements is equivalent to 
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representing the function by a piecewise linear approximation. The amplitude of a 
particular basis function is simply the value of the function at the corresponding 
grid point. As with finite difference methods, the solution can be improved by 
refining the grid rather than by complicating the structure of the individual basis 
functions. 

Higher order elements, known as B-splines, have some advantage over linear 
finite elements, since their additional smoothness permits the use of fewer basis 
functions. However, these higher order elements extend over a larger number of 
neighboring intervals and therefore give rise to a wider banded matrix. For exam- 
ple, quadratic B-splines overlap two nearest neighbors on each side and give rise to 
a block pentadiagonal matrix, while cubic B-splines overlap the three nearest 
neighbors on each side and generate a block heptadiagonal matrix. The reduced 
effort resulting from the smaller number of elements is offset by the increased effort 
required to invert the matrix. We shall see that linear finite elements can be used 
to treat equations with up to second-order spatial derivatives. Since this is the 
maximum order for our system, linear finite elements give the simplest possible 
treatment, and we choose to satisfy Ockham. 

Nonuniform grids can improve the lit and reduce the required number of grid 
points by concentrating the grid in regions of rapid spatial variation and making 
it sparse in regions where the solution is smooth. This is especially useful in the 
extreme case of thin shocks, but it can be useful in more general cases as well. In 
a nonlinear problem, regions of rapid variation move as the solution evolves. While 
a stationary grid could be packed in certain regions, this would not be useful if the 
region of rapid variation is not stationary. It is necessary to allow the grid to move 
and to find an algorithm which allows regions of concentrated grid to track regions 
of rapidly varying solution as they move. From the point of view of finite elements 
as basis functions, we seek a way to allow the basis functions to adapt themselves 
to the evolving solution in order to accelerate the convergence of the sum. 

If the grid is allowed to move, then the grid positions s’ become functions of time, 
and Eq. (29) is generalized to 

L’ily, l) = , V / C t )  clj(r, s’(t)). (36) 

Equation (30) for the time derivative is generalized to 

.P,(r, t) = .C{(f) aj(y, s’(t)) + jj(t) B,.,(r, J’(t)), 

where j?i,j(r, s’(t)) is determined by differentiation of Eq. (36) to be 

Bi,j(r, S’)=O, r<s’-‘; 

(37) 

r--JP’ 
= -rn,,] si-si-l’ sl~-‘<r<si; 

sJ+1-r 
s’<r<s’+‘; 

(38) 

= 0, s’+ ’ < r. 
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and mi,j is the slope of the ith dependent variable in the interval to the left of the 
jth grid node, 

(39) 

If m is regarded as a discontinuous function of r, then we can also write fi = -ma. 
Since m is discontinuous while a is continuous, b is also discontinuous. 

A straightforward generalization of the variational principle in Eq. (31) is a 
coupled system of equations for the amplitudes and node positions, 

aL aL -.=---co 
ag; as/ . (40) 

Just as Eq. (31) generates movements which give a best lit to the correct 
movements over the space of amplitudes, Eq. (40) generates movements which give 
a best fit over the enlarged space of amplitudes and node positions, and therefore 
a better lit. The grid moves in response to Eq. (40) so as to automatically concen- 
trate where it is needed to optimize the changing solution. This is the meaning of 
the variational form of Eq. (40). The validity of this is attested to by the results 
presened in Section V. 

A more explicit form of Eq. (40) is given by 

(aj, ak) $+ (a,, Bi,kPk = (a,, si), 

(lJi,j,ak)~~+(Bi.j,Bi,k)Sk=(P;,i~Si)9 

(41) 

(42) 

where the repeated index i in Eq. (42) implies summation, Equation (41) is called 
the alpha equation and governs the amplitudes, while Eq. (42) is called the beta 
equation and governs the node positions. The effect of treating the node position 
as a dependent variable is to add one more dependent variable per node. There is 
only one grid shared among all the physical variables, which compete in determin- 
ing where it should move. The structure of the matrix in Eqs. (41) and (42) is block 
tridiagonal in which the blocks contain symmetric coupling between each physical 
variable and the node position, but no direct coupling between the different 
physical variables. 

There is a mathematical difficulty with Eq. (42). The prescription for moving the 
grid is that it should move in such a way as to give a best tit to the solution. This 
prescription can become ambiguous in an interval in which the solutions for all the 
dependent variables are straight lines. This happens, for example, in the vicinity of 
the axis in cylindrical coordinates. If there are several nodes in such an interval, the 
fit is equally good no matter how the nodes are arranged. This is manifested mathe- 
matically by the vanishing of some of the matrix elements, causing the matrix to 
become singular. If the solution is nearly but not exactly a straight line, the matrix 
becomes nearly singular, causing the node positions to fluctuate erratically and 
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creating difficulties for the numerical ODE solver. This problem is solved by adding 
a small positive-definite penalty term, 

(43) 

involving only the grid positions and their time derivatives, to the variational L in 
Eq. (27). This has the effect of adding small positive-definite terms to the matrix in 
m (42), 

(~;,j,~;,k)‘(~;,j,j3,,k)+& s.j~I~~‘;“-611.1,k-sj,k), 
( I I- 1 /+1-s, 

where 6 is the Kronecker symbol. Intuitively, the effect of this internodal viscosity 
is to restrain the node motion in regions where the usual restoring force on a node 
becomes small. The optimum choice of the constant E is given by Miller as 10 times 
the square of the desired truncation error. This is large enough to avoid numerical 
difficulties but small enough to leave the grid motion unaffected in regions where 
the original matrix is not nearly singular. It has been found to work well in this 
application. 

To complete the specification of the procedure, we must define the weight 
functions w,(t, r, y, ay/&). These play two roles. First, the variational L defined in 
Eq. (27) contains a sum over terms for each of the equations in the system of 
Eq. (26). The different components of the y vector represent different physical quan- 
tities with different physical dimensions. In order to make L dimensionally consis- 
tent and in fact dimensionless, the different weight functions wi must have the 
dimension [t/y: r]. The particular choice of normalizing magnitude for each 
component of w contributes to determining the relative strength of each physical 
quantity in determining the motion of the nodes. In a practical code, it is preferable 
to accomplish this by dealing with normalized quantities as the fundamental 
dependent variables. Nevertheless, there is inevitably some ambiguity in the choice 
of normalizing factors. Miller’s prescription is to choose normalizing factors such 
that the normalized variables vary by order unity across the domain. This may not 
be possible if the range of variables changes drastically from the beginning to the 
end of the run. An example is the temperature in the high density Z-pinch, which 
starts very cold and ends very hot. The choice of normalizing factors retains an 
irreducible degree of art. 

The scale factors described above are independent of r and t. The second role of 
the weight functions involves a nonuniform factor. While the method is designed to 
cause the grid to concentrate in such regions, there is a tendency for all of the grid 
to fall into a shock. To prevent this and leave some of the grid to resolve the 
smooth region outside a shock, it is necessary to reduce the influence of regions of 
strong gradient. This is accomplished by defining the weight function to be [12] 

w;(t,r,y,ay/ar)=(l+mf)-“2. (45) 
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Here, mi denotes the slope of the ith dependent variable, a discontinuous function 
of r, and hence the weight function is also discontinuous. The interpretation of this 
gradient weighting depends upon the normalizations chosen for r and y;, as 
discussed in the previous paragraph. The effect of this choice of weight function is 
to de-emphasize regions of large gradient and to convert the integral over r to an 
integral over the arc length of the solution curve. 

Miller has recommended two additional methods for controlling the grid motion, 
which he refers to as internodal spring terms and overemphasis of diffusion in the 
beta equation [ 123. These have been found to be unnecessary, not particularly 
helpful, and inconsistent with the conceptual simplicity of the method, and they 
have not been included in this work. 

It is important to consider the extent to which the MFE method preserves exact 
conservation properties in the discretized equations. Consider a scalar conservative 
equation in the form of Eq. (20) with no source terms, 

ay aF z+z=o. (46) 

Suppose y(x, t) represents the density of some substance and 

YE 
I 

’ y(x, t) dx 
u 

(47) 

represents the total amount of that substance between fixed limits a and b. Then the 
rate of change of this quantity is given by 

dY 
s 

b ay 
dt= 

-dx 
a at 

s 
baF 

=- -dx a ax 
= F(a) - F(b) (48) 

Since there is no internal source, the total quantity varies only because of inflow at 
a and outflow at b. 

Now consider the discretized equations of the MFE method, Eqs. (36), (37), and 
(41), with weight function w = 1. The constant function 1 has an exact expansion 
in the basis functions c(~(x, s’), 

1 = c’c(Jx, sl). (49) 

While the basis functions depend on time through the moving nodes s’, the 
coefficients ci must adjust in such a way that the sum remains constant, so 

; [dcL;(x, s’)] = 0. (50) 
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Then we may write 

Y= h da,(x) cc,(x) y'(t) dx I u 

= c’(a,, cl,) y’(t). (51) 

Differentiating with respect to time and using Eqs. (37), (41), and (50), we obtain 

dY 
x=C'[(Uf, Uj)j-'+ (Crj, bj)Sj] 

=-.I 
b 

il 
c’q(x) gdx 

=-I b aF 
- dx 

u ax 

= F(a) -F(b), (52) 

proving that the discretized equations of moving finite elements preserve the exact 
conservation property when the weight functions are constant. In fact, this is true 
regardless of how the grid moves, since the proof does not dlepend upon the beta 
equation, Eq. (42). 

The use of gradient weighting rather than uniform weight functions destroys this 
exact conservation property. Nevertheless, gradient weighting so improves the 
distribution of nodes that the additional accuracy offsets the loss of the exact 
conservation property. Since the conservation laws are not trivially satisfied, they 
may be used as a check to verify the accuracy of the method. This will be discussed 
further for the examples presented in Section V. It was mentioned in Section II, and 
will be discussed further in Section IV, that there are reasons for choosing noncon- 
served quantities as the fundamental dependent variables of the method. The 
discussion above shows that, since the conservation properties have already been 
compromised, there is no great sacrifice in compromising them further. 

IV. CODE IMPLEMENTATION 

The result of spatial discretization by moving finite Elements is the reduction of 
the partial differential equations governing the fluid, Eqs. (20))(22) to a set of 
ordinary differential equations in time, Eqs. (41) and (42) which must be set up 
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and integrated numerically. In this section we discuss the implementation of a com- 
puter code called PINCH to accomplish this. We discuss the method of evaluation 
of quadratures, the(choice of dependent variables, control of numerical instabilities, 
initial conditions, specification of boundary conditions, and the method of numeri- 
cal integration of the ordinary differential equations. 

The scalar products on the left of Eqs. (41) and (42) can be evaluated analyti- 
cally. Using Eqs. (33), (35), and (45) we find that, in the equation for the ith 
physical quantity, 

toLIP clk)i= i Cwi,jdjtGj- I,k + 2bj,i,k) 

+ wi,j+ 1 Aj+ lCsj+ I,k + 2bj,/c)13 (53) 

where wi,i is the weight function of the ith physical quantity in the interval sip’ < 
r < si and Aj = sj - si- ’ is the grid spacing in that interval. Similarly, using 
Eqs. (33), (38), (44), and (45), we obtain 

= - 3 Cmi,,Wi,jAj(6j- I,& + 26j,/c) 

+ mi.j+ I Wi,j+ lAj+ ,Chj+ I,k + 26,,)], 

+E ( di,j-bi&l,j 6i+l,j-6i,j 
- 

s;-Sj&1 S lfl ) -sj . 

(54) 

(55) 

The right sides of Eqs. (41) and (42) require numerical quadrature. It is at this 
point that the value of expressing the equations in the form of Eqs. (20)-(22) 
becomes apparent. While the functional form of the convective fluxes, the diffusion 
tensor, and the sources may be quite complicated, as in the case of Braginskii’s 
transport equations, the task of evaluating the quadratures depends only on the 
structure of the equations and not on the functional form of the fluxes and sources. 
This allows a small, modular code to be written once and for all which can handle 
any system of equations of the form of Eqs. (20)-(22). The specification of a par- 
ticular system then requires merely subroutines containing the fluxes, sources, and 
initial and boundary conditions. The task of writing a code to formulate and 
integrate the MFE equations is required only once. 

The treatment of the source terms is simple and straightforward. Since the grid 
automatically adjusts to prevent large variations in any one interval, evaluation of 
the quantities (~11, Si) and (/Ii, j, Si) by 4-point Gaussian quadrature in each grid 
interval gives more than adequate accuracy. For the flux terms, the additional spa- 
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tial derivative and the discontinuous behavior of the first derivatives and weight 
functions call for more attention. The procedure described here represents a 
generalization of the procedure described by Miller as “mollification.” 

For an internal j, the flux terms in the alpha equation, Eq. (41), have the form 

s h a = 
u 

F,% (ctjwj)dr 

(56) 

Integration by parts removes the derivative from the flux and avoids the need to 
differentiate the complicated flux terms. Boundary terms vanish because aj vanishes 
at the boundaries. From Eq. (35) we find that the derivative of aj is constant in 
each grid interval, positive to the left of .rj, negative to the right, and zero beyond 
the nearest neighbors. The weight function is constant in each grid interval and 
discontinuous across grid points. Its derivative therefore vanishes except at the grid 
points, where it is proportional to a delta function. For this term we change the 
variable of integration to the slope m and note that CC; = 1 at s-j. The result is 

- =Wz,j(Fi)-~i,j+l (F,),,,+~~~~"~F,dm. (57) 

Here, (F,)j denotes the average of the flux in the ith equation over the jth grid 
interval, and is evaluated by 4-point Gaussian quadrature, as with the source terms. 
The limits of integration in the m integral are the slopes to the left and right of the 
grid point. The spatial functions in the flux F, are evaluated at the grid point 9. 

Evaluation of the m integral again breaks into two parts, for the convective and 
diffusive flux terms, according to Eq. (21). Since the convective flux terms are inde- 
pendent of the slope m, they can be brought outside the integral, which may then 
be evaluated analytically, using Eq. (45), as 

s 
m,.,tI aw. m,,,+t 

-Jdm=w(m) . m,,, am ML , 
(58) 

For the diffusive flux terms, we have F, = -D,,m,, so the ith flux contains terms 
proportional to the each of the slopes mk. To obtain a well-defined result for the 
m-integral in Eq. (57), it is necessary to make an assumption about the relative 
variation of m, and mk within the infinitesimal vicinity of a grid point. Such an 
assumption constitutes part of the definition of the discretization method. The 
simplest assumption is linear, 
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mk=c+dmi, 

Am, - 
c=rii,--j---gmi, 

d,dm, 
Am,’ 

tii = 4 (m,? + m; ), 

Am, e (m,? - ml: ). 

(59) 

The contribution from c is then proportional to the same integral as in Eq. (58), 
while the contribution from d is proportional to 

s ml.l+l awi 
ml. , 

am m dm = [mw - arc sinh(m)] I:::;+’ (60) 

A convenient organization scheme is to collect the terms into three groups: con- 
tributions from numerical quadratures (Fi)j over the grid cells; those from mean 
fluxes Fi,j = i(F,, j + Fj,j+ ,) at the grid points; and those from difference fluxes 
AFi,j = F;,j+ I -F,, j at the grid points. The result is 

- &, arc sinh(m) 
m,,+ I 
I 1 AF,, j. 

1-J ml. , 

(61) 

A similar calculation for the /? terms yields 

- a,,,,$ = -m,j”i,j(Fi)j+mi,j+,Wi,j+1(F*)j+l ( > 
m,,,+1 

-mw(m) Fi, 

w., 

+ $, (1 + mfi;,j) w(m)/m”“’ AF;,j. (62) 
1-J 9, 

The fluxes and sources can be coded into a subroutine and evaluated for local, 
difference, and mean slopes to evaluate the expressions in Eqs. (61) and (62). Only 
the diffusive terms contribute to difference fluxes, since the convective fluxes on the 

581/85/l-12 
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left and right of a grid point are equal, and care must be taken not to include terms 
proportional to transport coefficients but not containing derivatives of the 
fundamental dependent variables. For example, in Braginskii’s expression for the 
viscosity, there are terms proportional to v/r as well as au/& Terms like the former 
are not diffusive in this sense even though they arise from physical processes 
associated with diffusion. 

The form of Eq. (62) yields insight into the cause and cure of an instability in the 
node motion which was encoutered in the course of this work. In a system with a 
developing shock, the convective fluxes cause the shock front to become steeper, 
while the diffusive fluxes serve to ameliorate the shock and prevent it from collaps- 
ing to zero thickness. The stabilizing effect of the diffusion fluxes is manifested in 
two ways in the discretized equations of MFE. In the alpha equation, Eq. (41), the 
effect of the terms in Eq. (61) is to reduce the amplitude of the solution at the peak 
of a shock and increase the amplitude at the trough, thereby smoothing the discon- 
tinuity. In the beta equation, Eq. (42), the effect of the diffusive contributions to 
Eq. (62) is to clause the nodes on either side of a shock to move apart, thereby 
spreading the discontinuity. 

These effects depend upon the fact that the diffusion tensor D in Eq. (21) is sym- 
metric and positive definite. A negative diffusion tensor would cause growing rather 
than decaying amplitudes and collapsing rather than spreading nodes, producing 
instability. In the equations of Braginskii, the diagonal terms of D are clearly 
positive definite. In addition, D satisfies the Onsager symmetry relations, guarantee- 
ing that the quadratic form of the thermodynamic forces times fluxes which con- 
stitutes the entropy production rate is positive definite. The dominant terms in 
Eq. (62), arising from the diffusive fluxes, which keep the nodes apart at a shock, 
constitute a quadratic form similar to the entropy production rate. However, the 
exact behavior of this quadratic form depends upon the choice of fundamental 
dependent variables to be discretized. We shall see that a good choice of variables 
can keep this quadratic form positive definite, ensuring stability, while a poor 
choice can cause it to go negative, resulting in the collapse of pairs of nodes. 

To understand this potential instability, consider the limiting case of a discon- 
tinuity in which all the discretized variables yi have large, constant slopes rnj,[ in the 
interval between the nodes s’-’ and s’, and zero slopes outside that interval. The 
large diffusive fluxes associated with the large slopes contribute to the equations for 
the motion of the node positions S’ ’ and S’ through Eq. (62). The contributions 
from F,,, and AF,,i exactly cancel each other, leaving only the term 

gI= -mi,l wi,, (F, >r (63) 

summed over the (triply) repeated index i, in the equation for s’ and an equal and 
opposite term in the equation for s ‘-I The effect of the diffusive terms is thus to . 
move the nodes apart if and only if g, is positive. If it is negative, it pulls the nodes 
together, further steepening the slopes and increasing the force pulling them 
together, leading to the unstable collapse of the pair of nodes. 
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To clarify the conditions determining the sign of g,, we consider a sequence of 
increasingly complicated cases. The simplest case is that of a diagonal diffusion 
tensor. In this case, ‘Fi = -D, ,mi, and 

g,=Di,imf,lwi,. (641 

This is positive definite as long as all the diagonal elements Di,i are positive. If any 
of them are negative, then g, can become negative if the slope rni,[ for that compo- 
nent becomes much larger than all the other slopes. When the fundamental depend- 
ent variables of the HDZP are chosen to be pr, u, T, and B,, the diffusion tensor 
is nearly diagonal. Only the terms proportional to /IA are off-diagonal. ‘The 
diagonal terms are all positive except for the density term, which vanishes. The 
significance of this vanishing is discussed below. 

If the diffusion tensor is not diagonal, then F,= -Di,imj, and 

gI= Di,jmi.lmj.rwi,,. (65) 

If the weight functions are all one and D is symmetric positive-definite, then g, 
would still be positive-definite. While D is indeed symmetric positive-definite for 
Braginskii’s equations, the weight functions are not all one. The best choice for the 
relative scaling of the dependent variables is determined by the condition that the 
scaled variables vary by order one over the domain, and this may not be consistent 
with maintaining the symmetry of D. Furthermore, gradient-weighting introduces 
an asymmetric factor which can destroy the positve-definiteness of the quadratic 
form. These problems could in principle be eliminated by choosing dependent 
variables which diagonalize D. In the HDZP problem this has been found to be 
unnecessary because the off-diagonal terms are sufficiently small that the equations 
appear to remain stable. Future problems could run into this difficulty. 

If momentum and energy rather than velocity and temperature are chosen as 
fundamental dependent variables, a more serious problem arises. There is a linear 
relationship between the gradients of these two different sets of variables. The 
tensor relating the gradients is asymmetric. If we define y = [ pr, u, T, B,] and II= 
[ pr, pi-, pr, B,], then @/dr = M . ay/&, with 

(66) 

The asymmetry of this tensor destroys the positive-definiteness of g,. It was first 
found empirically that the code aborted because two nodes collapsed together. The 
cause was traced to this problem. Replacing momentum and energy by velocity and 
temperature as fundamental dependent variables cured the problem. 

Once a choice is made for the set of fundamental dependent variables, other 
stability issues must be considered. Numerical problems can occur if components of 
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the diffusion tensor get too small or too large. Discretization of first derivatives can 
introduce truncation errors which behave mathematically like second derivatives 
with negative coefftcients. In the absence of larger second derivative terms with 
positive coefficients, these cause numerical instability. The instability can be con- 
trolled by introducing artificial diffusion which is positive and sufficiently large to 
ensure the positivity of the combined effective coefficient of the second derivative. 
The form of the added artificial diffusion should be carefully chosen to avoid com- 
promising the conservation properties of the equations. For the HDZP, this 
problem occurs for the density variable, since the density equation contains no dif- 
fusion. The magnitude of the artificial dissipation should be as small as numerical 
stability permits, since a large artificial dissipation introduces large errors on long 
time scales. 

If transport coefficients get very large, another problem can occur. Discretization 
of the second derivative produces a term proportional to a transport coefficient 
times the difference between slopes in adjacent cells, D(m, - mi . I). These slopes are 
computed up to some relative truncation error, typically of order 10-3. If the diffu- 
sion coefficient D is very large, the slopes in adjacent cells are forced by the diffusive 
terms to approach each other, but the error in the difference between the slopes is 
amplified by the large diffusion coefficient. This causes numerical jitters to set in 
and causes the time stepping routine to slow down drastically. This problem can be 
treated by artificially limiting the magnitude of the diffusion coefficients. Since the 
influence of the large diffusion is to force the gradients to relax, limiting the 
magnitude of the diffusion to something which is still quite large will have very little 
effect on the nature of the solution. For the HDZP, this problem occurs for the 
magnetic field equation, since the resistivity is very large for the initial cold plasma. 

The result of these two effects is to set upper and lower bounds on the diffusion 
coefficients that can be treated. These bounds can be estimated quantitatively as 
follows. Define a characteristic length 2 as the length scale over which the initial 
conditions vary by order unity. Define a time scale z as the time required for the 
convective terms to produce a change of order unity. For the HDZP, a good choice 
is z = L/u, where u is the initial central thermal velocity. Define a characteristic scale 
for a diffusion coefficient as D, = A2/z. Experience has shown that, when the grid 
contains about 40 nodes and the time stepping error is about 10m3, instability sets 
in when the diffusion coefficients drop below about 10p3D,, while the jitters 
associated with large diffusion coefficients set in when D approaches 103D,. This is 
a satisfactorily large range for most practical purpose. While wider limits might be 
achievable by using a larger grid and a tighter tolerance on the time step, this 
would be expensive. 

While the MFE method gives a prescription for moving the grid in order to mini- 
mize the residual as the solution evolves, it gives no prescription for distributing the 
initial grid. A poor choice of initial grid distribution can cause large errors in the 
transient period before the grid has a chance to optimize its distribution. A simple 
choice is to distribute the initial grid uniformly. This is not a good choice for the 
self-similar initial profiles discussed in Appendix A, which have a steeply rising tem- 
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perature and a strong skin current at the edge where the density vanishes. We use 
an initial grid which is packed at the edge, with a grid spacing increasing 
logarithmically with distance from the edge. 

Boundary conditions must be imposed on the four physical variables and the grid 
position at the origin and the plasma edge. Proper choice of boundary conditions 
is critical, strongly influencing the stability of the method. The method of choosing 
boundary conditions is much less straightforward than the treatment of the internal 
equations, and causes more difficulty than any other feature of the method. 

Four of the variables, pr, u, B,, and grid position sO, vanish at the origin. The 
temperature has a vanishing slope at the origin. These boundary conditions are 
straightforward to implement by suitably modifying the matrix elements and 
inhomogeneities at the zeroth node so that the variables which vanish there have 
zero time derivative, and the time derivative of the temperature at the origin is the 
same as the time derivative of the temperature at the first internal node. 

The first internal grid position also presents a problem. Early in time, during the 
dynamic phase of the discharge, when large amplitude waves buffet the axis, it is 
important for the grid near the axis to respond according to the standard prescrip- 
tion of MFE in order to resolve the behavior. Late in time, during the final, quies- 
cent, compression phase of the discharge, it tends to fall into the origin and cause 
a drastic reduction in the time step if allowed to evolve this way. During this phase, 
it is made Lagrangian, moving with the local fluid velocity. There is a transition 
point chosen empirically. This is not entirely satisfactory, but it works. 

The boundary conditions at the plasma edge are also tricky. They depend upon 
the assumed nature of the edge. The differential equations become singular as the 
density goes to zero because the density occurs in denominators. The velocity equa- 
tion contains a force density divided by a mass density, both of which vanish at the 
edge. The temperature equation contains a heating rate divided by a specific heat, 
both of which vanish at the edge. Both the velocity and the temperature are indeter- 
minate in the vacuum, yet their limiting values at the edge are important in 
determining the motion of the edge. Two assumptions about the plasma-vacuum 
interface are possible. First, the density may vanish at a finite radius. In this case, 
a vacuum region beyond the plasma could be treated by breaking the domain into 
two distinct regions with a sharp boundary between them, or the computational 
grid could terminate just inside the vacuum-plasma interface. Either way, the edge 
must move with the velocity of the plasma just inside the boundary. This is 
problematic because the plasma velocity, and therefore the velocity of the edge 
node, becomes indeterminate and jittery as the edge is approached. For a plasma 
with a finite edge, the grid may be terminated at a point just short of where 
the density vanishes. For a profile with a long, asymptotic tail, the grid may be 
terminated at a sufficiently large radius that the amount of mass beyond it is 
negligible. 

In order to specify such an edge, it is necessary to estimate the slope of the 
dependent variables in a ghost cell of zero width beyond the edge, since this slope 
is required in evaluating the diffusion terms at the last node. Careful treatment is 
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necessary in order to avoid numerical instabilities in the vicinity of the boundary. 
The slopes of pr, u, and T in the ghost cell are estimated by fitting their values at 
the last three nodes to a quadratic and differentiating the quadratic. The magnetic 
field variable is treated differently. The time derivative of the magnetic field at the 
edge is imposed to satisfy a given rate of current ramp. 

One final step is taken to assure a stable boundary. A stabilizing, diffusion-like 
term is added to the right-hand side of the equation for each physical variable at 
the last node, causing the slope of this variable in the last cell to approach the slope 
extrapolated from the last three internal nodes. This extra term provides numerical 
stability without introducing a large internal artificial diffusion term. 

The result of spatial discretization by moving finite elements is the conversion of 
the original system of partial differential equations to a large coupled system of 
ordinary differential equations which must be integrated forward in time. The MFE 
method introduces stiffness into the equations even if the original equations do not 
possess this property, making it essential to use a stiffly stable implicit integration 
method in order to avoid a highly restrictive Courant limit on the size of the time 
step. To understand the nature of the stiffness, consider a steep shock front and 
assume that the grid positions have clustered inside the shock in order to resolve 
it. If a node position is displaced from its proper position inside the shock, it snaps 
back and settles down with great speed, making the motion stiff. The ODE solver 
used is called DIRK2, a second-order, diagonally implicit Runge-Kutta method 
[9,20,21]. It breaks a time step into three parts and performs a backward 
Cauchy-Euler (BCE) step, followed by a linear extrapolation, followed by another 
BCE step. It automatically chooses its own step size, which is typically of order 
10P2r in the natural units described above. 

The backward Cauchy-Euler steps require evaluation and solution of a Jacobian 
matrix. The Jacobian is block-tridiagonal because of the nearest-neighbor interac- 
tion of linear finite elements, with full, asymmetric blocks. Evaluation of the 
derivatives in the Jacobian involves numerical differences. The procedure for solving 
the linear system is direct LU decomposition, making use of the block tridiagonal 
structure, without pivoting. Since evaluation and solution of this large matrix is the 
most time-consuming part of the code, the DIRK2 subroutine estimates the 
accuracy of the old Jacobian and updates the Jacobian less frequently than the 
residuals. Efficient generalization of the MFE method to 2 and 3 dimensions will 
probably require an iterative technique to exploit the more complicated pattern of 
sparseness which results. 

V. NUMERICAL RESULTS 

In this section we present the results of numerical simulation of the high density 
Z-pinch. We consider primarily the upgraded Los Alamos experiment, using this as 
a test case for the numerical method. We describe the results for each dependent 
variable, including both the complete run and some details at early and late times. 
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We discuss such numerical issues as the grid motion, conservation properties, and 
computational effort. We consider the effect of departures from initial pressure 
balance. We present evidence that the profiles approach self-similar profiles at late 
times and relate this to the results of Appendix A. The section concludes with some 
briefer comments about other cases run. 

We assume an initial fiber with a uniform density of 5 x lo** particles/cc, the den- 
sity of solid deuterium, and a radius of 20 pm, typical of the experiment. The initial 
profiles are those of the self-similar solutions discussed in Appendix A, chosen to 
give the same line density. The initial radius of the profile is also 20 pm, while the 
initial central density is sightly higher, 6.8 x 10” particles/cc, because the density 
profile is not uniform. The initial total plasma current is 200 kA. With the con- 
straint of pressure balance in the initial self-similar profile, this corresponds to an 
initial central temperature of 100 eV. These conditions are chosen because at a tem- 
perature much below 100 eV, the Coulomb logarithm gets small, indicating that the 
fiber is too cold to be considered a plasma and must be described by more com- 
plicated constitutive relations. While the early, cold phase of the discharge has not 
been investigated, there is no reason why it could not be treated by the same 
numerical methods described here. The current rises linearly, corresponding to the 
choice LY = 1 in the self-similar profiles, with a rate of 1013 A/S, rising to 1.2 MA 
after 100 ns. The grid has 41 nodes, from the zeroth node at the origin to the 40th 
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at 0.99 of the edge radius. It is initially distributed nonuniformly, packed most den- 
sely at the edge, with a node spacing increasing by a constant factor as it moves 
inward. 

Figures 14 show the density, velocity, temperature, and magnetic field for a 
complete run of 100 ns. Each figure shows a sequence of 50 profiles of one 
dependent variable vs radius, at equally space time steps of 2 ns. Figure 1 shows 
that the density first drops as the plasma expands, indicating the outward pressure 
forces exceed the inward force of the rising magnetic field, then rises again as it 
contracts. Since the initial state is a solution to the self-similar equations, one might 
expect the behavior to be a quiescent, monotonic inward contraction, as predicted 
by the analytical solutions. This expectation is violated because the self-similar 
equations do not adequately match the full equations during the early part of the 
discharge, primarily due to the failure of the fully magnetized limit in the inner half 
of the profile and the absence of viscosity from the analytical solutions. Brems- 
strahlung radiation is another effect not included in the self-similar solutions, but 
it is important only late in time, when the plasma is hot. Late in time, the density 
profiles take on the appearance of self-similarity, with subsequent profiles 
unchanged in shape but increasing in amplitude as the radius decreases, such that 
the total mass is conserved. Figure 2 shows that the velocity initially oscillates 

x106 
2.00 

1.35 

z zi 
2 0 0.70 

> 
c 
B $ 0 

L 

0 1.52 3.54 5.56 7.58 9.60 

RADIAL POSITION r (cm) x10-3 

FIG. 2. Radial fluid veloocity o vs radius r at time intervals of 2 ns for 100 ns. 



MOVING FINITE ELEMENT PINCH MODEL 187 

between positive and negative values as the plasma first expands, then oscillates due 
to large but damped magnetosonic waves, and finally settles down to a small 
steady, negative, contracting velocity with a nearly linear profile. Figure 3 shows 
that the temperature rises smoothly from its initial 100 eV to about 3 keV. The 
presence of thermoelectric terms proportional to p /I (10) has a small effect on the 
temperature profiles, producing a sight rise of the temperature at the origin, but it 
is hardly noticeable because the large, unmagnetized electron thermal conductivity 
at the origin keeps the temperature flat. Figure 4 shows the magnetic field ramping 
up as the current through the plasma increases linearly. 

Figure 5 shows the behavior of the node positions as a function of time, with 
time increasing along the vertical axis. The edge node moves with the local plasma 
velocity, and therefore gives an indication of the damped wavelike motion of the 
edge plasma, superimposed on a much slower expansion and contraction. Three 
additional nodes are shown inside this innermost node. They are not involved in 
the computation, but are used to smoothly interpolate the graphs of the dependent 
variables. The internal nodes move according to the prescription of the MFE 
method. Their motion reflects the effort of the grid to move with the internal waves 
in the plasma in such a way as to give as accurate as possible a representation of 
the dependent variables. 
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Since the plasma eventually settles down to monotonic, quiescent contraction 
and the profiles approach smooth, self-similar shapes, Figs. l-5 for the complete 
run do not give a clear indication of sufficiently violent behavior to warrant the use 
of an adaptive grid. However, before this quiescent behavior is reached, a more 
violent phase of the discharge occurs during which the adaptive grid of the MFE 
method is ideally suited. A clearer indication of this is seen in Fig. 6, showing the 
velocity during the first 2.5 ns of the discharge. Figure 7 shows the motion of the 
grid during this same interval. The grid successfully moves in such a way as to 
smoothly resolve the violent, large-amplitude waves in spite of its relative coarse- 
ness. The ability of MFE to deal with large-amplitude waves when they are present 
without a large penalty when they are not is one of its important benefits. This 
property is further demonstrated in the next figure. Without this ability, the 
tendency of the solutions to approach self-similarity could not be convincingly 
demonstrated. 

Figure 8 shows the number of residual evaluations for each 0.4 ns time interval, 
a measure of the computational difficulty and the internal time step size. Early in 
time, the plasma supports large-amplitude waves. Late in time, the waves damp out 
and the plasma becomes quiescent. The large waves in the early phase force the 
code to take small time steps, determined by the frequency of magnetosonic waves, 
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in order to maintain accuracy. Late in time, the magnetosonic frequency increases 
because of the rising temperature and magnetic field. If the code were limited by the 
stability conditions of an explicit method, it would be forced to continue small time 
steps even after the waves decay. Because it uses an implicit, stiffly stable method, 
it experiences no such constraint. At about 44 ns, when the amplitude of the waves 
has damped to the level of the tolerance of the ODE solver, the number of residual 
evaluations drops by a factor of about 50, and the average internal step size 
increases by about the same amount. There is no interesting change in the physics 
at this time, it is a purely numerical effect. The total cpu time on a Cray 1 computer 
was about 17 min, most of it taken during the first 44 ns of the simulation. 

Figure 9 shows the total mass error relative to the initial mass as a function of 
time. Since the edge node moves with the local fluid velocity, there should be no 
flow of mass into or out of the edge, and the total mass should be conserved. It was 
noted in Section 3 that the discretized equations of unweighted MFE conserve such 
quantities exactly, but that gradient weighting destroys this property. The mass is 
conserved throughout the run to a precision of about O.Ol%, with no tendency to 
increase secularly. This is especially good considering that about 12,700 internal 
time steps were used, each with a prescribed tolerance of 10-3. It shows that 
conservation does not suffer greatly from gradient weighting. 
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The simulation illustrated in Figs. 5-9 is initialized to an analytical self-similar 
solution. While the initial expansion and oscillation of the plasma indicate that it 
does not remain in such a configuration, the fact that it starts in a near-equilibrium 
state has the effect of minimizing the amplitude of the oscillations. We get a very 
different picture if we let the initial conditions start with the same profiles but 
reduce the magnetic field strength by a factor of 0.75. This recudes the magnetic 
pressure by nearly a factor of 2 and eliminates initial pressure balance. Figures 10 
and 11 show the grid motion and temperature profiles for this run. The expansion 
and oscillations are much larger. Late in time, the oscillations again damp out, and 
the profiles approach the appearance of self-similarity. Since the initial current is 
smaller than in the first run while the current ramp rate is the same, the code is run 
a little longer and the final currents are equal. The final state of the second run 
seems identical to that of the first run. Not only do both approach self-similar 
profiles, but the magnitudes of the plasma radius and the central temperature are 
essentially identical. 

The self-similarity of the solutions late in time may be further appreciated with 
the help of Figs. 12 and 13. These show the velocity and temperature profiles during 
the last half of the first run, with the velocity and radius normalized to their edge 
values and the temperature normalized to its central value. With these time- 
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dependent magnitudes scaled out, only the profile shapes remain. The profiles 
converge to asymptotic final states which are similar but not identical to those 
discussed in Appendix A. The greatest difference is in the velocity profiles, which 
deviate substantially’from a straight line, particularly near the origin and the edge, 
and more so toward the end of the run, the trend being towards the top of the 
figure. This can be understood in terms of the effects of viscous terms on the self- 
similar profiles, as discussed at the end of Appendix A. 

These conclusions are remarkable for two reasons. First, it should be recalled 
that the self-similar solutions discussed in Appendix A are obtained for only a 
limited subset of the pinch equations, retaining only some of the transport coef- 
ficients and then only in the limit of full magnetization, while discarding inertia, 
viscosity, thermal force terms, and radiation. These graphs show that the full set of 
equations appears to approach self-similarity. No analytical explanation exists for 
this behavior. While the asymptotic profiles are qualitatively similar to those 
obtained analytically, they differ in some important ways. The velocity profiles 
differ noticeably from linear, especially near the edge. The temperature profiles are 
less steep at the edge. Both of these effects are probably due to the influence of 
viscosity. 
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A second reason for surprise is the insensitivity of the final state to initial condi- 
tions. The results of Appendix A show that a particular self-similar solution is com- 
pletely determined by specifying the line density, the total current, the current ramp 
rate and power, the initial radius, and the initial axial electric field. The second run 
differs substantially from the first in its lower initial field and lack of initial pressure 
balance, expands much more than the first, and goes through much more violent 
oscillations. Yet it settles down to a final state which is indistinguishable from that 
of the first. The analytical results offer no explanation for this behavior. Perhaps 
there is a deeper reason which has not yet been grasped. 

Some understanding of this behavior is obtained by noting that the dominant 
viscous coefficient, which behaves as the unmagnetized viscosity, scales as T’/*, and 
is quite large above 1 keV. Artificially reducing the viscosity by a factor of 10 is 
found to substantially slow the damping rate for both the fast magnetosonic oscilla- 
tions and the slow expansion and contraction. Simulation of the existing Los 
Alamos experiment, with a current ramp rate a that of the proposed experiment and 
a final temperature of about 300 eV, shows that these motions are not fully damped 
by the end of the 100 ns discharge. These insights suggest that the future experiment 
should be in a new regime compared to the old, in which the approach to the 
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asymptotic self-similar state is reached well before the end of the discharge. Since 
viscosity is so important for the symmetric motions, it may also play an important 
role in the anomalous stability which is observed in HDZP experiments. 

A few other numerical results are worth brief mention. While the other class of 
analytical self-similar solutions, incorporating inertia but not transport, is less rele- 
vant to the realistic behavior of the pinch, it is useful as a test case for verifying the 
behavior of the code. Simulations with these initial profiles and with transport 
terms turned off gives excellent agreement with the analytical results, typically 
within a relative precision of 10-3, the specified tolerance to the ODE solver and 
within the width of a curve on a graph. An effort was also made to obtain better 
agreement with the solution of Appendix A by turning off all effects not included 
in the analytical solutions. This was less successful because, in the presence of 
pressure balance, the force terms in the velocity equation contain the small dif- 
ference between large terms, and the resulting numerical noise, especially near the 
edge, is enough to prevent the initial numerical solution from staying with the 
analytical solution. As a check on the validity of the code, it may also be noted that 
the simulation of the earlier Los Alamos experiment gives good agreement with 
experimental observations of final temperature, around 300 eV. 
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VI. DISCUSSION 

We have presented a study of the high density Z-pinch based on the moving 
finite element method. The purpose of this work has been twofold. The HDZP is 
an interesting new concept for controlled fusion and as such is a worthy topic for 
simulation. In addition, it represents a sufficiently realistic and dilhcult system on 
which to test moving finite elements as a general-purpose technique for solving the 
nonlinear, time-dependent partial differential equations of fluid mechanics. 

We have begun by observing that the equations governing the HDZP may be 
cast in a general form, Eqs. (20))(22) and that these equations are well suited to 
treatment by moving finite elements. We have presented the general theory of the 
method and discussed the extent to which the discretized equations preserve exact 
conservation properties of the original continuous equations. We have discussed the 
details of our implementation, including evaluation of quadratures, boundary con- 
ditions, initial conditions, and stabilization procedures. We have used analytical 
and numerical techniques to study self-similar solutions for an important subset of 
the full equations, and used these solutions as a guide to the behavior of the 
numerical solutions. We have presented results which show the effectiveness of the 
technique as a tool for studying the physics of the HDZP. The results show that the 
HDZP has a strong tendency to approach a self-similar final state which goes 
beyond our analytical understanding. 

Development of this technique has been a long, difficult task. If such a develop- 
ment process were required for any particular application, it would be of ques- 
tionable utility. However, the result of this effort is a code which is simple to apply 
to any fluid problem which can be expressed in the form of Eqs. (20)-(22). Applica- 
tion requires only the specification of fluxes, sources, initial conditions, and bound- 
ary conditions. The task of discretization of the partial differential equations and 
integration of the resulting ordinary differential equations forward in time has been 
accomplished once and for all. Nevertheless, experience counsels caution, Complex 
nonlinear fluid problems are full of surprises. New applications of the method may 
be expected to require patience and understanding. Specification of scale factors, 
boundary conditions, initial grid spacing, and stabilizing terms remains more an art 
than a science. 

The success of this effort suggests that a similar effort may be justified for the 
development of general-purpose moving finite element codes for problems with two 
and three spatial dimensions. Equations (20)(22) have an obvious generalization 
to higher dimensions, and these equations are amenable to an obvious generaliza- 
tion of the MFE method. Work which has already been done on 2D problems 
indicates that the method is just as good as in one dimension. 

The most important new difficulty in a 2D code is the need for an efficient proce- 
dure for solving the large, sparse linear systems required for implicit solution of the 
time-dependent discretized equations. While this problem can be solved in one 
dimension by direct methods, the more complicated pattern of sparseness in two 
and three dimensions makes such methods impractical because of both time and 
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space requirements. The recent development of preconditioned conjugate gradient 
methods [22, 231 is expected to provide a good solution to this problem. 

Another anticipated difficulty is anisotropy. A strongly magnetized plasma is 
highly anisotropic. The fact that transport across the magnetic field is much slower 
than transport along the field is the basic idea of magnetic fusion research. This 
anisotropy is a well-known problem for numerical methods. Small numerical errors 
can cause the small transverse diffusion terms to be polluted by traces of the much 
larger parallel diffusion terms, obscuring the true behavior. Most methods are 
required to artificially reduce the parallel transport terms in order to limit this 
effect, and this can adversely influence the rate of equilibration along field lines. 
Another approach is the use of a coordinate system tailored to the magnetic field. 
This is analytically difficult and may be difficult or impossible to apply to a system 
in which the existence of well-nested flux surfaces is questionable. It is hoped that 
moving finite elements will provide a third solution by automatically aligning 
themselves to the magnetic field wherever it is strong enough to produce large 
anisotropy. 

A final point concerns the problem of grid tangling. The tendency of the grid to 
tangle, and the need to stop occasionally and readjust the grid, is a common 
problem with adaptive grid schemes in two dimensions. If the grid attempts to 
follow the motion of a fluid element, as in Lagrangian methods, it will quickly be 
torn apart by sheared flow and vortex motion. The tendency of moving linite 
elements to follow gradients rather than fluid elements may provide a solution to 
this problem. 

The moving finite element method has considerable intellectual appeal because of 
the simplicity and cogency of the theory. It is gratifying to find that it is also a 
robust tool for solving realistic problems. 

APPENDIX A: SELF-SIMILAR SOLUTIONS 

It has been noted by several authors that simplified subsets of the equations 
presented in Section II have self-similar solutions [S, 16, 171. In Section V we use 
these self-similar solutions as a means of analyzing the full solutions of the partial 
differential equations. These solutions maintain a constant profile shape while 
changing only the scale of their radius, density, velocity, temperature, and magnetic 
field as time evolves. In such cases, the partial differential equations separate into 
two systems of ordinary differential equations, for the spatial profiles and for the 
time evolution of the scale factors, respectively. These ordinary differential equa- 
tions are far simpler to solve and understand by analytical and numerical methods 
than the original partial differential equations. There is evidence that self-similar 
solutions may act as attractors for the solutions of the partial differential equations 
and thus provide a means for analyzing and understanding the time-asymptotic 
final state. In this Appendix we discuss such self-similar solutions. In addition to a 
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brief derivation of the ODES, we discuss the properties of the solutions more 
thoroughly than previous works in order to understand how to calculate and 
interpret them. 

Self-similar solutions are known for two subsets of our equations. One class of 
solutions is obtained by neglecting all dissipative terms, including viscosity, thermal 
conductivity, and resistivity, but retaining finite inertia [ 163. A second class is 
obtained by retaining thermal conductivity and resistivity, but neglecting inertia 
and viscosity, reducing the equation of motion, Eq. (24), to pressure balance 
between the fluid and magnetic pressures [S, 171. The second class of solutions is 
more relevant to the realistic situation because the HDZP is quite dissipative, espe- 
cially during the early, low-temperature phase of the discharge, during which the 
Lundquist number, the ratio of the resistive diffusion time to the Alfven transit 
time, is of order unity. When the partial differential equations are initialized to solu- 
tions of the first class, the full solutions quickly depart from them and never return. 
When they are initialized to the second class of solutions, the velocity is initially 
small and may remain small, making the neglect of inertia and viscosity self- 
consistent. 

The results presented here are most closely related to those of Refs. [S, 171. 
They go beyond those of Ref. [5] by presenting detailed numerical solutions of 
the equations for the self-similar spatial profiles, not just analytical solutions for 
the time dependence of the scale factors. They go beyond those of Ref. [ 173 in the 
thoroughness of the numerical treatment, the asymptotic analysis of the equations 
at the origin, the edge, and the point at infinity, and the removal of the restriction 
to CI = f j, where c1 is the power of the current rise as a function of time, defined 
in Eq. (A8) below. 

A further simplification is required in order to obtain dissipative self-similar solu- 
tions. Braginskii’s transport coefficients depend upon density, temperature, and 
magnetic field strength in a complicated manner. In addition to simple power-like 
scaling in the limits of large and small magnetization, there is a complicated transi- 
tion through the regime in which the gyration and collision frequencies are 
comparable. Since the magnetic field and hence the gyration frequency vanishes at 
the origin while the plasma density and hence the collision frequency vanishes at 
the edge, this transition region occurs in the region of interest. For the ions, which 
dominate the thermal conductivity, the region can be quite large. In addition, the 
Coulomb logarithm may be small during the early part of the discharge, especially 
near the origin where the density is highest, and may vary appreciably between the 
origin and the edge. Both of these considerations must be neglected in order to 
obtain a self-similar solution. The Coulomb logarithm must be treated as constant, 
and the transport coefficients must be treated in the highly magnetized limit. The 
neglect of the degree of magnetization and of viscosity are found to be the most 
important limitations of the self-similar solutions. This is discussed further in 
Section V. 

Self-similar solutions are found by assuming that all dependent variables can be 
expressed in terms of a dimensionless radius variable, <(r, t) = r/a(t), where a(t) is 
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a time-dependent scale factor to be determined. The velocity is assumed to be that 
of a uniform expansion or contraction, proportional to 5, 

The other dependent variables are assumed to scale as 

(A21 

where pO, TO, and B, are constants; N, 0, and /I are dimensionless, time-independent 
profile functions of the scaled radius; and v, t, and b are powers. It is also assumed 
that the resistivity and thermal conductivity scale as their highly magnetized forms 
with constant Coulomb logarithm, 

(A3) 

Inertia, viscosity, thermal force, and radiation are neglected. 
These scaling assumptions are introduced into Eqs. (3), (12), (19), and (23) to 

determined the profile function, powers, and time dependence. Equation (3), con- 
servation of mass, is satisfied if v = 2. Equation (23), which is now simply pressure 
balance, is satisfied if 

b=(v+r)/2=1+2/2, Bi = 8mokTo, (A4) 

where no = po/mi, is the particle density, and 

(A51 

Equation (19), for the magnetic field, requires that the time dependence of the 
radius be given by 

(‘46) 
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where 

is the resistive time scale factor for magnetic diffusion across the radius and y is a 
dimensionless free parameter introduced as a separation constant. When Eqs. (A5) 
and (A6) are combined, they give a current which scales as 

Equation (19) also implies a profile equation, 

(A8) 

(A9) 

Finally, Eq. (12), the heat equation, is satisfied for the same time dependence as 
in Eq. (A6) and implies a profile equation, 

where 

(A101 

(All) 

The profile equations, Eqs. (A5), (A9), and (AlO), may be expressed as a tifth- 
order system of coupled first-order ODES by introducing a vector of dependent 
variables u(t) with components 

u,=N@, 

u2 = I%, 

(A121 

N*( dQ -- 
‘5 = - j2@1/2 d< ’ 

Physically, U, is proportional to the fluid pressure; u2 is proportional to the 
magnetic field times the radius and is also proportional to the current flowing inside 
a given radius; uj is proportional to the electric field; uq is proportional to the tem- 
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perature; and u5 is proportional to the conductive heat flux. With these definitions, 
the profile equations become 

du, - = ayu2/5, 
4 

(A13) 

du, 5 -=; (u$4;‘2-yuI). 
& A 

Equations (A13) can be integrated numerically to obtain self-similar profiles: In 
order to understand the behavior of these profiles and relate them to realistic physi- 
cal configurations, it is necessary to study their asymptotic behavior as the radial 
variable 5 + 0 and co. Near the origin, we must specify boundary conditions for 
each component of u. There is no loss of generality in choosing u, = u4 = 1, since 
the physical density and temperature at the origin may be adjusted by choosing 
the constants p,, and T,,. There is an arbitrary constant u3(0), proportional to the 
electric field at the origin, which will be discussed further after we discuss the 
behavior at cc. Once this is specified, a regular solution at the origin is obtained 
by letting ~~(5) = z.+(O) r2/2 and u5 = [u3(0)’ - y] </2L as < + 0. 

A consequence of these boundary conditions is that the temperature variable u4 
has vanishing first, second, and third derivatives at the origin, and is therefore very 
flat. The vanishing of the second derivative finite, the second derivative 

will be small and the solution will not differ much from the self-similar solution. 
The behavior of the solution at large radii determines much about the nature of 

the plasma. If the density and pressure both vanish more rapidly than l/t’, the 
plasma is confined to a small region of space surrounded by vacuum and may be 
regarded as a good model of a fiber-initiated pinch. If the temperature goes to zero 
sufficiently fast but the density does not, then the thermal energy may be confined 
even though most of the mass is not. This represents a gas-embedded pinch, a hot 
plasma surrounded by a blanket of cold plasma. If the density and pressure are 
both unconfined, the solution cannot properly model a pinch. Finally, if the density 
vanishes at a finite radius, it represents another type of model of the fiber-initiated 
pinch. We now show that gas-embedded and finite-edge solutions exist to 
Eqs. (A13), but solutions which decay rapidly enough at large radii do not exist. 
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To determine the behavior at large radii, we use a nonlinear generalization of the 
method of Frobenius. Each of the dependent variables is assumed to have the form 
of a descending power series, 

j=O 

This form is introduced into Eqs. (A13), and the coefficient of each power of 5 
is required to vanish. This yields equations for the dominant powers p, and the 
coefficients c!j) 

The requirement that the dominant powers in each of Eqs. (A13) balance each 
other yields relations among the different powers. Regarding p, at this order as 
arbitrary, we obtain expressions for the other powers in terms of pr , 

pz=pJ=I+$ p4= -4 
3’ Ps=2+P,. (A151 

The requirement that the coefficients of the dominant powers balance each other 
yields relations among the leading coefficients ~10’. Regarding c$‘) as arbitrary, we 
obtain expressions for the other coeffkients in terms of cl” from the first four of 
Eqs. (A13), 

Cl - 
(0) -  _ c P& (0)2 

Pl * ’ 

(0) - ay (0) 
c3 - c2 9 

P2 

2 213 
CO)- p_z 

c4 - 
0 MY ’ 

(0,-42 (0)2 
cs - 3&2 . 

(A16) 

When Eqs. (A15) and (A16) are substituted into the last of Eqs. (A13), we obtain 
a quadratic equation for the previously undetermined power p, , 

(C(+t)P:-(4C(~-l)P,-gC1~=0, (Af7) 
which has two roots, 

p, = {($x- 1)f [($cX;1+ l)*++VJ”2}/(2a+ 1). (‘418) 

Equation (A8) shows that c1 is the power of the time with which the current rises, 
and during the ramp-up phase of the pinch this is positive. Equation (Al 1) shows 
that 2 is a dimensionless measure of the ratio of thermal conductivity to resistivity 
and is also positive. For positive CI and ,I there is always one positive and one 
negative root. For the positive root, the pressure increases monotonically at large 
radius and the plasma is unconfined. However, the expression for p2 in Eq. (A15) 
and the expression for c\” in Eq. (A16) show that in this case the pressure at large 
radius is negative and therefore unphysical. Numerical integration of Eqs. (A13) 
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confirms that for the initial conditions discussed above, the behavior at large radii 
is dominated by the negative root in Eq. (A18). 

The two power-like solutions discussed above represent only two of five inde- 
pendent solutions at large radii. The remaining solutions are exponential. Of these, 
the growing solutions are excluded for the same reason the positive power is 
excluded, and the decaying solutions decay more rapidly than the decaying power. 
Therefore, the decaying power represents the dominant behavior at large radii. 

The negative value of p1 indicates that the pressure decays at large radii. The 
most negative value of p, , achieved as a + 0, is - 2. For this value, the integral of 
the pressure has a logarithmic singularity as 5 + co, indicating that the bulk of the 
plasma energy is unbounded. For finite positive values of c(, the singularity is 
stronger, and yet more of the plasma is unbounded. The expression for p4 in 
Eq. (A15) shows that the temperature falls as 5-4’3, and this implies that the 
density falls no more rapidly than te2j3, and rises if p1 > - :. The conclusion is 
that no self-similar solution exists which represents a pinch decaying asymptotically 
at large radii without a surrounding cold plasma. 

A self-similar solution for a bounded pinch does exist with density and pressure 
vanishing at a finite radius. Figures 1418 show a family of numerical solutions as 
a function of the radial variable t for CI = /1= 1. The only difference among the 
members of the family is the initial value z+(O), proportional to the electric field on 
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FIG. 14. Self-simular solutions for u ,, proportional to plasma pressure, vs scaled radius 5. 
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FIG. 15. Self-simular solutions for u z, proportional to azimuthal magnetic field times radius, vs 
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FIG. 16. Self-simular solutions for u ), proportional to axial electric field, vs scaled radius 5. 
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FIG. 17. Self-simular solutions for uq, proportional to plasma temperature, vs scaled radius 5. 
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FIG. 18. Self-simular solutions for u5, proportional to conductive heat flux, vs scaled radius 5. 
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axis. There is a critical value of ~~(0) above which the solutions are unbounded, as 
discussed above, and below which the pressure variable U, vanishes at a finite 
radius. For the bounded solutions, the temperature at the edge goes to infinity 
and the current density is strongly peaked at the edge, with the total current 
approaching a finite limit. The critical value of u,(O) depends upon CC, A, and y, and 
has only been determined numerically. 

The singular edge behavior can be further elucidated by asymptotic analysis. 
Dividing Eqs. (A13) by the derivative of the vanishing pressure variable U, and 
treating this as a new independent variable, we obtain a simplified set of equations 
describing the behavior of the oother variables as the pressure goes to zero, 

f = -&2u,u;f2, 
1 

duz 
-= -p/u,, 
du, 

dug 
-= 312 

du, 
-vlu,u, 7 (A191 

4 
-=U2UqUg/U~U3~2 
du, 

The numerical solutions indicate that U, + 0 and u4 + CC at the edge, while 

~&Yli; 
u5, and 5 approach constants. It follows from this and Eqs. (A19) that 

and du,/du, -+O, du,/du, and du,/du, approach constants, and 
duJdu, -P co. We can derive relative asymptotic functional forms by treating c and 
u3 as constants. This yields 

5=51, 

u2 = (u2.1 - 25:u1)1’2, 

u3=u3,1r 

u4 = u4., exp i[ yy~2-~2,J-%l $-J2 
2 1 

+- 
u2 ,l 3 1 L-t , u. 

u5, l - 3u2, l u3,, 1 W2 + u2, l 1 

(A20) 
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where the ui, , are constants of integration. Detailed comparison of these asymptotic 
forms to numerical solutions confirms their accuracy. The numerical solutions may 
also be used to extract asymptotic values for the ZQ. Two important features of 
these solutions are that u4 -+ cc exponentially as ui + 0, and that u2 + u2 I quite 
steeply, as a square root, manifesting a strong skin current, while the electric field 
variable u3 remains smooth. Finally, it may be noted that the constant u5,r which 
the heat flux variable u5 approaches is negative for the bounded solutions and 
becomes positive at the transition to unbounded solutions. This represents the fact that 
the bounded solutions have a steeply rising temperature and therefore an inward heat 
flux at the edge, while the unbounded solutions have a falling temperature and 
therefore an outward heat flux. 

One more property of the profile equations which can be determined analytically 
is that they are 
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terms in the full equations in the self-similar equations. The viscous terms are par- 
ticularly interesting. Eq. (Al) shows that the velocity is linear in the radius and 
never vanishes, suggesting that the viscous terms could be important. The scaling 
of Braginskii’s dominant viscosity coefficient, denoted qO, with temperature is such 
that it gets large at the high temperatures characteristic of the singular edge and 
would probably produce a qualitative change in the edge behavior if it were 
included. Careful examination of the viscous terms in the velocity and temperature 
equations suggests that it should be possible to include them in a self-similar treat- 
ment. If the plasma is assumed to be strongly magnetized and only the largest 
viscosity coefficient is retained, it preserves the self-similar scaling and modifies the 
profile equations. 

However, there is a fatal flaw in these equations. At the axis, where the magnetic 
field vanishes, Braginskii’s coefficients u0 and ye, become equal, and there is an 
important cancellation. Self-similar solutions are obtainable only if ‘I, is neglected 
everywhere, and this cancellation fails to occur. This introduces a singularity at the 
axis similar to the singularity in the thermal conductivity noted above. However, 
whereas the singularity in the termal conductivity can be handled by forcing the 
second derivative of the temperature to vanish, such a solution for the velocity 
cannot be found because the self-similar solutions require the velocity to be linear 
in radius. There is therefore no regular solution at the origin. 

If the singularity at the origin is ignored for a moment and the viscous terms in 
the profile equations are included in the edge analysis of Eqs. (A19) and (A20), the 
analysis shows that the viscous terms do indeed have a profound effect on the edge 
behavior. They cause the temperature to approach a finite limit at the edge rather 
than going to co. 

These results indicate that the self-similar solutions without viscosity may 
provide a good fit to the full solutions everywhere but at the origin and the edge. 
The graphs presented in Section V show that this is indeed the case. 
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